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Abstract. In this anticle we proposc a simple high gain observer for extracting
the unknown paramcters of the DufTing's oscillator. It is shown that this system
is obscrvable and identifiable algebraically, with respect to a well-chosen
output. Hence, an extended diffcrential parameterization of the output and its
time derivatives can be obtained. Based on these facts, we evaluate the obtained
parameterization in a finite number of times to build a set of algebraic
cquations, and then, the parametric model is obtained by an inverse matrix.
Although, the time derivatives output are not available, we overcome this
difficulty by using an practical High-Gain Obscrver.

Keywords. Mechanical Oscillator, Chaos Reconstruction and High-Gain
Observers.

1 Introduction

An interesting problem in chaos theory and its applications is the reconstruction
of the unknown variables and parameters of a chaotic system. This problem is
important because any experimental dynamical system posses only a few variables or
parameters that can be measured (see [Parlitz e al., 1994] and [Abarbanel, 1996} ). In
some cases, it is necessary to estimate or reconstruct the unavailable quantities in
order to completely determine the system’s state and to achieve a good
synchronization or to predict the system’s behavior.

Roughly speaking, there are two approaches for reconstructing a chaotic attractor.
The first relies on control theory; like the procedure based on system inversion (see
[U. Feldmann e al., 1996], [H. Huijberts et. Al, 2000] and [M.S. Suarez et. al.,2003];
and, traditional identification schemas and state observer design (see [G. Cheng,
1995], [A. S. Poznyak ef al., 1999],[1. Chavez M. ef al., 2002) and ,[I. Chavez M. et
al., 2002]). The second approach is based on time series from a particular chaotic
system, which are used in the so-called time delay reconstruction of a phase space
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(see [Parlitz et al., 1994], [K.T. Alligood er al., 1997], [1. Makoto et al., 1997], [T.
Sauer et al., 1991], [T. Stojanovski ef al., 1997] and [F. Takens, 1981]).

In this communication, we deal with the reconstruction of the Duffing’s System
(DMO) by means of measurements of the position state, which is considered as the
system output. The on-line identification procedure is based on algebraic properties
that the DMO satisfies ([R. Martinez et al., 2001] and [I. Chavez M e al., 2002]).
Those properties allow finding a differential parameterization of the output and its
time derivatives. Then, we evaluate the obtained parameterization in a discrete set of
time to form a set of linear equations, where the parameters of the DMO are the
variables of the obtained linear equations. And finally, we recover the unknown
parameter by solving a set of linear equations. We should mention that time
evaluation of the differential parameterization requires the unavailable output time
derivatives. Such difficulty is overcome by using a high-gain observer (HGO). An
HGO does not require an accurate model, and the error can be as small as desired (see
[Dabroom and Khalil, 1999]), where the error is the difference between the original
system measured signal and the signal estimated by the observer.

The rest of this work is organized as follows. Section 1 gives a brief description
of the DMO. Section 2 is devoted to studying some important algebraic properties of
the differential equations of the DMO. Also, in Section 2 we present an identification
procedure by means of the previously introduced algebraic properties assuming that
the time derivatives of the selected output are available. Finally, in the same Section,
we present an HGO for computing the unavailable time derivatives of the output.
Section 3 contains the results of the simulations while Section 4 is devoted to giving
some conclusions. Finally, in the Appendix we provide a proof of Propositions 1 and

2,

2 Duffing’s Mechanical Oscillator

Consider the traditional DMO, described by:

X=v (l)
v==pyv-p,x’ - p,x+ Acos(wt);

where X measures the oscillator position, A is the amplitude of the forcing function,
W is the forcing frequency, p, is the damping coefTicient, and p, and p, are fixed
constants related to a non-linear stiffness function. When the parameters values are in
a neighborhood of {p, =04,p,=-1.Lp,=1,4A=2.1,w= 1.8}, this system
has a chaotic behavior (see [Nayfeh & Mook, 1979], [Alligood et al., 1997)).
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Recovering the Set of Parameters

We first establish the main problem to solve: We desire to recover the unknown
parameters {p,, Pas pJ,A} from the measured output or available positionx. To

solve it, we first discuss two important and useful definitions which will allow us to
transform the original system into a set of differential parameterizations of the output.
The differential parameterization of the output is obtained based on its successive
output time derivatives; where the order of the time derivative of the output is a

function of the number of parameters that we want to identify!. Finally, evaluating
the parameterization in a finite number of times, it is possible to recover the unknown
parameters by means of the inverse of a matrix.

Some Algebraic Properties

We say that a system is algebraically observable if there exists a suitable output
provided that all the system variables can be differentially parameterized solely in
terms of the output. Moreover, if we can express the parameter vector as a parametric
function of the output and a finite number of its time derivatives, we say that the
system is identifiable with respect to this output.

Now, let us consider again the DMO and define the output y = x . Evidently, we
have:

v=JY, (2)
v =—vp, —yp, =y p, + Acos(wt).

If we continue to differentiate the output with respect to time, we obtain:

Y ==3p, = yp, =y’ P, + Acos(w),

Yy =-yp, - 3p, =3y’ yp, — wAsin(¥r),

Y =—y®p, 9, + 3y —6yp® o, — w Acos(wr),

YO ==y, = yVp, —(-18ypy =3y’ y? =65")p; + w Asin(w).

After some manipulations, the last set of equations may be rewritten as:
MQy)Q = F(w,1) 3)

Where ( stands for the vector of parameters defined as:

S B . 3 l 5 . Y
' In this case is necessary to obtain from y” to y‘ ) because we want to estimate four
unknown parameters.
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F(w,t) is the independent vector of the variable y whose components are

given as:

; (6)
F(w,t) = [—cos(wt), wsin(wt), w? cos(wt),~-w’ sm(wt)]

Therefore, vector () is algebraically identifiable with respect to the

variable y(). The relation (3) is referred as the extended differential

parameterization. .

Next, let us consider the following assumptions:

Al: The solution y(t) and its time derivatives exhibit a chaotic behavior for the
system (1),

A2: The time derivatives of the selected output are always available.

Now, we mention an important proposition that allows us to compute the
unknown parameter vector.

Proposition 1: Let us consider system (1) with its respective extended differential

parameterization (3), under assumptions Al and A2. Then, the inverse of matrix (5)
exists almost for any time.

Proof: (Refer to Appendix).
Notice that, substituting the vector values Q into relation (4), we can recover the

set of unknown parameters {p,, P2 p,,A}. Finally, in next section, we propose a
practical numerical differentiator to estimate the time derivatives of the variable y.

A simple HGO

In order to obtain the time derivatives of the oulput Y, we suggest the following

scheme to estimate the time derivatives. Let us define vector Y'=[y...y*) and let us
propose the following filter given by:

Y=A?+HCQ—?) (7)
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Where, matrix A defined the well-known Brunovsky form [Dabroom & Khalil, 1999]
and

8
H' = [“—'“—:] .C=[0...0] 0
€ £ 3

€ is a small positive parameter and the positive constants a, are selected such that
the polynomial defined as:

p(s)=s* +a,s® +..+a,, €

is Hurwitz (see [Dabroom & Khalil, 1999] for more details).
The following proposition allows us to compute the error§ =Y — Y.

Proposition 2: Consider the system (7) under assumptions Al. Then, the HGO
proposed in (8) is able to recover Y with bounded error

[l Bre /A" (10)

Where A" is given by

A’ =min {Rc[roors(p(s))l}, (1)

B is a positive constant which depends on the initial conditions §(0) and

n=maxy ()

Notice that, we substitute the estimated time derivative Pm instead of

y® k= {l,...,S} into expression (5).

Numerical Simulations

We first test the efficiency of the HGO by computer simulations. The experiments
were implemented by using the 4th-order Runge-Kutta algorithm. The computation
was performed with a precision of 8 decimal digit numbers, from ¢ =0 seconds to
t =10 seconds. To obtain a good performance, the step size in the numerical method

was set to 0.000/. The DMO parameter values were set as p, =0.3; p, =-1.2;
p; =1, A=1.8, w=1.9. The initial conditions were set as y(0) =1 and y(0) =-1.

The poiynomial was chosen to be p(s)= (s"’ +2w,s +cjo,,2 ) , with £ =0.707
andw, =0.9. The gain of the HGO was selected ase = 0.005.
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For this particular simulation after ¢=0.25 seconds the derivative estimation

errors were around: ’ ;
E, =0./x/0% E, =0.3x10°, & =09x10°, §, =0.25x107, & = 0.1x10".

Consequently, we obtain a very good estimation of non available derivatives.
Finally, we probe the effectiveness of the described identification method by

numerical simulations. The initial conditions and the physical parameters were taken

as in the previous experiment.
Figures | and 2 show the estimation of the parameter A, p; and p; and p;,

respectively.
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Fig. 2. Identification of parameters p; and p;

3 Conclusions

Based on the algebraic differential approach for the identification problem of the
traditionally Duffing's oscillator that has been treated in this paper. The fact that the
syslem is algebraically observable and algebraically identifiable, with respect to a
specified variable, allowed us to describe the original system by means of a
differential parameterization of the output and its respective time derivatives. This
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differential parameterization has all the necessary information to recover the
parametric model of the DMO. Then, we proceeded to evaluate the differential
parameterization in a finite number of times in order to form a set of algebraic
equ_ations, where the unknown parameters of the DMO were obtained by computing
an inverse matrix. The lack of the output’s time derivatives required in the set of
algebraic equations was overcome by the design of an HGO, where the observation
errors can be as small as needed by tuning a specific parameter accordingly to
Proposition 2.

The obtained identification solution was illustrated in a numerical simulation,
where the HGO recovers the output’s time derivatives, and then, the corresponding
unknown parameters can be revealed.
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Appendix
Proof of Proposition 1:

We first suppose that the set of functions {y(r), (), y(1), y‘”(!)} is linearly
dependent in a time interval I where y(f) shows a chaotic behavior according to
Al. This implies the existence of a set of constants ¢,,C;,Cy,andC,, different from
zero such that:

(1) +c, 90 + ¢y +¢,y? (1) =0

Notice that if ¢, =0 then the last second order differential equation turns into a

first order differential equation, therefore, y(f) is a monotonic decreasing or
monotonic increasing function (see p. 332 of [Alligood er al., 1997)) This case is not
possible, because y(1) has a chaotic behavior. Also, by the Poincaré-Bendixon
theorem (see p. 337 of [Alligood et al., 1997]) it is well-known that a second order
differential equation that does not depend on time cannot exhibit a chaotic behavior.

Thus, ﬁ)(t),y(t),y((),ym (t)}is linearly independent in a time interval [ .

Proof of Proposition 2:

Evidently, vector Y can be written as:

Y =AY +35,. (=



218 Carlos Aguilar-1bdricz, et al.

With 87 = P.0...y®] Subtracting (12) from (7), we obtain the following
differential equation of the error:

=[4-HCE +5,. (13)

Notice that the characteristic polynomial of A = A—HC'is given byp(s 8),

which is also Hurtwitz. That is, the proposed H assigns the eigenvalues of A at] €

times the roots of p(s) (9). Hence, the error € satisfies
(14)

e()=e"C") (0)+I Ay (s)Ms |.

Since A is exponentially stable and the signal ym is bounded, we also have the

following inequality:

g <Pec g + e (- e X o e A as

Where the positives constants B, A ;0] are previously defined in Proposition 2.
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